Email: [first name]
Google Scholar
I'm a 6th year PhD student in Intelligent Data Exploration and Analysis Laboratory (IDEAL) at UT Austin. I am very fortunate to be able to learn from and interact with Professors Joydeep Ghosh, and Alex Dimakis. My PhD research is to study various aspects of greedy algorithms in machine learning, both from theory and practical viewpoints. From the theory side, I have worked on studying approximation guarantees for "greedy-like" algorithms for sparsity and rank constrained problems for general functions based on their smoothness and convexity, and convergence rates for greedy algorithms like accelerated IHT, Matching Pursuit and boosting . From practical side, I have worked on using greedy selections for approximate variational inference for sparse regression, sparse PCA for fMRI applications, and for interpreting black box models. In the past I have worked on problems involving predicting buying propensity based on marketing touches, large scale recommendation systems, Ad Click prediction, and ranking.