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Abstract

We propose a novel approach for sparse prob-
abilistic principal component analysis, that
combines a low rank representation for the la-
tent factors and loadings with a novel sparse
variational inference approach for estimating
distributions of latent variables subject to
sparse support constraints. Inference and pa-
rameter estimation for the resulting model is
achieved via expectation maximization with
a novel variational inference method for the
E-step that induces sparsity. We show that
this inference problem can be reduced to dis-
crete optimal support selection. The discrete
optimization is submodular, hence, greedy
selection is guaranteed to achieve 1-1/e frac-
tion of the optimal. Empirical studies indi-
cate effectiveness of the proposed approach
for the recovery of a parsimonious decom-
position as compared to established base-
line methods. We also evaluate our method
against state-of-the-art methods on high di-
mensional fMRI data, and show that the
method performs as well as or better than
other methods.

1 Introduction

Principal component analysis (PCA) [2] is a standard
technique for representing data using low dimensional
variables given by factors and loadings. The factors
represent the basis shared by all examples, and the
loadings are computed so that each example can be
described as a linear combination of the shared ba-
sis. The factors and loadings are estimated to maxi-
mize the explained data variance, or equivalently, to
minimize the data reconstruction error with respect
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to the Frobenius norm. PCA is often applied for ex-
ploratory data analysis which requires interpreting the
estimated factors. Unfortunately, direct interpretation
of the PCA factors is challenging as the recovered vari-
ables are not identifiable, i.e. the solutions are invari-
ant to in-plane rotations. As a remedy, several meth-
ods have been devised for estimating rotations that
lead to interpretable factors [12, 1]. In addition to in-
terpretability, there is accumulating evidence that cer-
tain natural phenomena may be described by (approx-
imately) sparse bases - motivating the development of
sparse decomposition techniques.

Given the vast expanse of data being generated in var-
ious forms, and comparatively slower increase in com-
putation power, models that succinctly explain data
are desirable. While there are now many well studied
computational models for sparse PCA [10, 29, 6, 15],
probabilistic approaches are less developed. There are
important reasons further motivating development of
probabilistic methods. Probabilistic models capture
uncertainty in the data and random variables and can
be used to estimate “confidence bars” with respect to
the model via posterior covariance estimates. Further,
a probabilistic approach is able to handle missing data
via marginalization, incremental learning using EM,
and offer the possibility of automated hyper-parameter
tuning using hierarchical priors. These properties mo-
tivate our development of a probabilistic approach for
sparse PCA.

In developing the new approach, we combine the prob-
abilistic PCA [24], with an approach for estimating
the distribution of latent variables with sparse sup-
port [13]. The proposed sparse probabilistic PCA is
optimized using Expectation Maximization (EM). The
expectation-step (E-step) is modified to capture the
sparsity constraints and results in factors supported
on a sparse domain. The inference is reduced to sup-
port selection - a submodular discrete optimization
problem. Hence, greedy selection is guaranteed to
achieve (1− 1

e ) fraction of the optimal. We emphasize
that while we use the proposed variational inference
method for sparse PCA, it is more general and can be
used in any EM algorithm requiring sparse inference
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for the latent variables. e.g. another application could
be sparse topic coding, which is a modified form of
topic modelling in which each document is generated
using only a few topics.

Main contributions of this paper are (a) a novel
method for sparse variational inference to recover
sparse factors by exploiting submodularity structure
of the cost function (b) a novel approach for sparse
probabilistic PCA as a special case of the above and its
efficient parameter estimation. (c) evaluation on high
dimensional simulated data generated by factors with
sparse support and high dimensional resting state neu-
roimaging data. Our results show that the proposed
approach recovers a parsimonious decomposition and
outperforms established baseline methods.

Notation. We represent vectors as small letter bolds
e.g. u. Matrices are represented by capital bolds e.g.
X,T. Matrix transposes are represented by super-
script †. Identity matrices of size s are represented by
Is. 1(0) is a column vector of all ones (zeroes). The
ith row of a matrix M is indexed as Mi,·, while jth col-
umn is M·,j . We use P(·),Q(·) to represent probability
densities over random variables which may be scalar,
vector, or matrix valued which shall be clear from con-
text. Sets are represented by sans serif fonts e.g. S,
complement of a set S is Sc. For a vector u ∈ Rd,
and a set S of support dimensions with |S| = k, k ≤ d,
uS ∈ Rk denotes subvector of u supported on S. Sim-
ilarly, for a matrix X ∈ Rn×d, XS ∈ Rk×k denotes the
submatrix supported on S.

The rest of the paper is organized as follows. Section 2
defines some concepts that will be used throughout the
paper, and discusses some related work in the area.
Section 3 summarizes recent progress in constructing
sparse prior using constrained information projection.
Section 4 uses the theory summarized in Section 3 to
develop our method for inference under sparsity con-
straints, and Section 5 applies the new method for
sparse PCA. Finally, Section 6 describes the experi-
ments conducted.

2 Background and Related Work

KL Divergence: Let X be a measurable set, and
P(·) and Q(·) be two probability densities defined on
X, then the the Kullback-Liebler distance between P(·)
and Q(·) is defined as

KL(Q‖P) =

∫
x∈X

Q(x) log
Q(x)

P(x)
dx.

It has an information theoretic interpretation: it mea-
sures expected number of additional bits needed to
encode samples from P(·), when using the code from

Q(·) rather than P(·). For this reason, if Q(·) is sup-
ported on a set S ⊂ X, while P(·) is supported on
X, then Q(·) that minimizes the KL divergence, with
some abuse of standard notation, is the information
projection of P(·) onto set S.

Domain restriction: Let P be a probability density
defined on a measurable set X, and let S ⊂ X, then PS

is the S-restriction of P: PS(x) = 0 if x /∈ S, PS(x) =
P(x)∫

s∈S P(s)ds
if x ∈ S.

Sparse PCA: Principal component analysis aims to
factorize a given matrix T of size n× d into a loading
matrix X of size n × r and a latent variable matrix
W of size r × d, where r is known as the rank, or the
number of factors. The decomposition is given by:

T ≈ XW,

so that the reconstruction error ||T−XW||2 is mini-
mized. While PCA is non-convex, it can be solved us-
ing the singular value decomposition of T to estimate
the largest p singular values and their corresponding
singular vectors. Sparse PCA [10, 29, 6, 15] generally
involves enforcing constraints that ensure W is sparse
i.e. the entries W have only a few non-zero entries.
Another way of looking at sparse PCA is from an op-
timization viewpoint. For the principal factor w,

w∗ = arg max||w||2=1,||w||0=kw
TTw.

Subsequent factors are learnt iteratively by projecting
T onto orthogonal complement of w∗. The former ap-
proach is more suitable for developing the probabilistic
PCA framework.

Sparse PCA has gained a lot of attention and there has
been substantial amount of work in this area. The ini-
tial approaches used heuristics such as rotation[9], or
thresholding [5]. Guan and Dy [8] proposed a sparse
PCA model using the the low rank factorized repre-
sentation. A Laplace prior was applied to these latent
factors to encourage sparsity, based on the analogy to
the l1 norm that has been applied to much success in
the computational sparse PCA literature. Similarly,
Zou et al. [29] and Jolliffe et al. [10] also applied Lasso
based techniques for obtaining sparse factors. In con-
trast, Archambeau and Bach [4] applied a variation of
the relevance vector machine [23] and more sophisti-
cated inverse Gamma priors to encourage sparsity in
the latent factors. While not directly posed as proba-
bilistic method, Sigg and Buhmann [22] modified the
Expectation Maximization approach of probabilistic
PCA to encourage sparsity or non-negativity in the
recovered factors. Thus, it is possible to interpret the
approach of [22] as a probabilistic model under an ap-
propriate prior. [6] use a semidefinite relaxation to
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compute a full regularized path using a greedy ap-
proach. [28] apply truncation to the power method to
obtain sparsity in the factors. [21] use message pass-
ing to solve Bayesian PCA with two zero norm priors -
spike-and-slab and microcanonical prior. Papailiopou-
los et al. [19] introduce sparsity by eliminating vec-
tors in low rank approximation of the given vectors.
Sparse PCA models have been applied in a variety of
applications, often with optimization guarantees. For
instance, d’Aspremont et al. [6] applied sparse princi-
pal components to the task of gene ranking, while [15]
used sparse coding techniques in image processing for
in-painting.

3 Priors for Sparsity Constrained
Variables

Constrained information projection is fundamental to
our approach of introducing sparsity constraints. To
motivate our choice of method of inducing sparsity in
probabilistic PCA, we summarize some results from
recently published work by Koyejo et al. [13] on the
construction of sparse priors using information projec-
tion. They show that restricting the domain of a prob-
ability distribution from an ambient space to its subset
is equivalent to information projection of the original
distribution onto the constrained set of distributions
defined on the subset.

Let P and Q represent probability densities. Through-
out this paper, we assume that the base measure is
supported over the entire domain set. If that is not
the case, we simply redefine the domain as its sup-
port set. Moreover, the densities are such that the
KL divergence is bounded. So the results presented
here may not hold for degenerate distributions. We
begin by characterizing information projection under
equality constraints of expectation.

Lemma 1 (Altun and Smola [3]).

[Primal] min
Q

KL(Q‖P) s.t. EQ [β(x) ] = c

[Dual] max
λ
〈λ, c〉 − log

∫
x∈X

P(x)e〈λ,β(x)〉dx

and the unique solution is given by Q∗(x) =
p(x)e〈λ∗,β(x)〉−G(λ∗) where λ∗ is the dual solution and
G(λ∗) ensures normalization.

Let φS(x) : X→ R be a function defined as φS(x) = 0 if
x ∈ S, and is strictly positive otherwise. Lemma 2 uses
Lemma 1 to show the equivalence of domain restriction
and an expectation constraint on φ.

Lemma 2. Let PX be the set of all probability dis-
tributions defined on a measurable set X. Similarly,
PS be the set of all probability distributions defined on

S ⊂ X. Further, let PφS
= {P ∈ PX|EP [φS ] = 0}.

Then PφS
= PS.

Proof. Follows from non-negativity of φ.

We can now present the following result, that char-
acterizes the relationship between restriction of den-
sities and information projection subject to domain
constraints.

Theorem 3. Let X ⊃ S be a measurable set. The
information projection of a distribution P ∈ PX to the
constraint set PS is the restriction of P to the domain
S.

Proof. The information projection of P to PS is
given by (using Lemma 1 and Lemma 2) Q∗(x) =
P(x)e〈λ∗,φS(x)〉−G(λ∗) , where:

λ∗ = arg min
λ

log

∫
x∈X

P(x)e〈λ,φS(x)〉dx,

which gives λ∗ = −∞, and thus e〈λ∗,φS(x)〉 → δS(x), so
Q∗ = P(x)δS(x)/

∫
S

P(x)dx, where δS(x) is the Dirac
delta function.

Thus, the information projection of a distribution P
to the support constraints S is the conditional den-
sity that assigns 0 measure to Sc. Moreover, the
KL distance between P and the projected density
can be quantified. From Theorem 3, we find that
PS(x) = P(x)δS(x)/Z, where Z is the normalization
factor:

Z =

∫
S

P(x)dx =

∫
X

P(xS,xSc)δS(x)dx

=

∫
X

P(xS|xSc)P(xSc)δSc(x)dx

=P(xSc = 0Sc)

With this result, we may now compute the restriction
explicitly:

PS(x) = P(xS|xSc)P(xSc)δS(x)/P(xSc = 0Sc)

= P(xS|xSc = 0Sc)δS(x). (1)

In other words, the information projection to a sparse
support domain is the conditional distribution of x ∈ S
at xAc = 0Sc . The resulting gap is:

KL(PS‖P) =

∫
S

PS(x) log
PS(x)

P(x)
dx

=

∫
S

PS(x) log
P(x)

P(x)P(xSc = 0Sc)
dx

= − log P(xSc = 0Sc). (2)
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Theorem 4. [13] For a given support set s, define
J(s)=log P(xsc = 0sc). J(s) is submodular.

Proof sketch. Monotone: Let c ⊂ s, then:

P(xM\C) = P(xM\S,xM\S∩C) ≤ P(xM\S)

Submodular: Consider F (s) = log P(xs = cs), for a
constant cs. F (s) is bounded above and below, and
(assuming P(·) has support on the set s) F (s) does
not take value −∞. Since it can be written as F (s) =
−KL(δS‖pS)[27], so it is submodular [14]. Finally, we
note that if F (s) is submodular, so is its reflection
J(s) = F (m\s).

While the above results are valid for more general set-
tings, we are particularly interested in the special case
of sparsity as domain constraints.

A natural way of thinking about introducing sparsity
in a distribution is restricting the support of the dis-
tribution. In this section, by showing equivalence of
domain restriction and information projection, we also
get a theoretical justification for the same.

4 Inference with Sparse Constraints

In this Section, we illustrate how priors constructed by
restricting domain to sparse supports can be incorpo-
rated in practical algorithms for sparse inference.

Expectation Maximization can be described using the
free energy interpretation [17]. Maximizing the neg-
ative log-likelihood can be shown to be equivalent to
maximizing a free energy function F (see Equation
3). The E-step can be viewed as the search over the
space of distributions Q(.) of the latent variables W,
keeping the parameters Θ fixed (Equation 4), and the
M-step can be interpreted to be the search over the
parameter space, keeping the latent variables W fixed
(Equation 5). Let KL(.‖.) be the KL-divergence and
T be the observed data, then the cost function for the
EM is given by ([17]):

F (Q(W),Θ) = −KL(Q(W)‖P(W|T; Θ))+log P(T; Θ).
(3)

E-step: max
Q

F (Q(W),Θ), (4)

M-step: max
Θ

F (Q(W),Θ). (5)

This view of the EM algorithm provides the flexibil-
ity to design algorithms with any E and M steps that
monotonically increase F .

4.1 Variational E-step

An unconstrained optimization over Q in Equation 4
returns the posterior P(W|T; Θ). Variational meth-
ods perform the search for best Q over a constrained
set [26]. Let D be the set of distributions over W that
fully factorize over individual rows of W : Q(W) =∏r
i=1 Q(Wi,·). We restrict the search over Q to D. As

a result of this restriction, we can optimize Q(Wi,·) for
one i at a time in a co-ordinate descent fashion.

For introducing sparsity, we impose an additional con-
straint that ∀i ∈ [r],Q(Wi,·) is ki-sparse i.e. it has
support only on at most ki out of the ambient d di-
mensions. Let Ki be the set of all ki-sparse supports.
From Equations 4 and 3, it follows that the variational
E-step is minimization of KL divergence over the sets
Ki. As shown in Section 3, information projection to a
set is equivalent to restricting domain to the respective
set. So, minimizing the KL-divergence can be thought
as searching for the sparse support set that loses the
least amount of information by restricting the domain
set of distributions to sparse sets. We get an optimiza-
tion over the constrained space of distributions:

min
K1

. . .min
Kr

min
Q(W)∈D

∀i, Supp(Q(Wi,·))∈Ki

KL(Q(W)‖P(W|T; Θ)).

(6)

For Gaussian P, Equation 6 can be re-written as an
iterated information projection. For each row i ∈ [r],

min
Ki

min
Supp(Q(Wi,·))∈Ki

KL
(

Q(Wi,·)‖P̂ (Wi,·)
)
, (7)

where, with W\i,· representing all rows of W except

i, P̂i depends on Q(W\i,·) and log P(W|T; Θ).

Thus, the independence assumption on Q(.) allows for
optimizing over an i, while holding the others fixed in a
co-ordinate descent algorithm. Each information pro-
jection monotonically decreases the free energy func-
tion.

Recall that the KL-gap for the constraining support
was characterized in Section 3. Using Equation 2, we
can simplify Equation 7 for each i as

For each row i ∈ [r], max
Ki

log(P̂i([Wi,·]Kc
i

= 0Kc
i
))

(8)

Equation 8 is the resulting discrete optimization prob-
lem to be solved for variational E-step for each i. By
Theorem 4, optimization problem over the set of di-
mensions is submodular, and hence instead of exhaus-
tive search, each of the ki dimensions can be selected
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by a greedy algorithm which achieves at least a con-
stant fraction

(
1− 1

e

)
of the objective value obtained

by the optimal solution [18]. Moreover, no polyno-
mial time algorithm can provide a better approxima-
tion guarantee unless P = NP [7].

To summarize, under the variational assumptions, the
E-step can be solved iteratively over each i, and each
optimization over i is a submodular discrete optimiza-
tion problem with guarantees for using a greedy selec-
tion strategy. Moreover, since optimization over each
i monotonically increases (or does not change) F , up-
dating the latent variable even for a single i suffices.
As we shall see, this is particularly helpful for PCA.

5 Probabilistic PCA with Sparse
Priors

We consider n observations of data vector valued
variables in d dimensional ambient space, which are
stacked in a matrix T ∈ Rn×d. Drawing inspiration
from traditional PCA, we seek a few sparse basis vec-
tors whose linear combination generates the observa-
tion matrix with small error. The observation matrix
is modelled as a product of a parameter X ∈ Rn×r
and a sparse W ∈ Rr×d. The sparse basis vectors are
stacked as rows of W, and their linear combination
is modeled by X. In cases which have n � d, the
above factorization is useful for small r, which is set
according to the domain. µ is the matrix of column
means generated as, µ = columnMeans(T)

† ⊗ 1, and
Gaussian noise is represented by εij ∼ N(0, σ2),∀i ∈
[n],∀j ∈ [d].

The observation model is represented as:

T = XW + µ+ ε.

We will use a normal prior for each row of W i.e.
Wi,· ∼ N(0,C) ∀i ∈ [r], given a prior covariance ma-
trix C, while the rows are independent. The joint
distribution can also be written as the matrix-variate
normal W ∼ MVN(0,C, I). In the proposed model,
the parameters are given by Θ = {X, σ2}, while W
are the latent variables. Inference and learning can
be performed using the EM algorithm applied on the
log-likelihood log P(T; X, σ2). As we shall see, the ap-
plication of structural constraints of sparsity on the
factors leads to a variational E-step.

Note that we can write the PCA equation as T =∑
i X·,iWi,·. Because of variational assumptions, the

E-step can be solved by updating Wi,· for a single i
while keeping the others fixed. The M-step inherently
has the same property for any individual X·,i.

5.1 E-Step

While the guarantees for Equation 8 for inference
over sparse support hold for general distributions, for
sparse probabilistic PCA, we apply it for Gaussian P
and Q.

With Zi = T −
∑
j 6=i X·,jE [ Wj,· ], using some basic

algebra and properties of the Gaussian distribution,
we can re-write Equation 8 for the sparse PCA setup
as:

For each row i ∈ [r],

max
Ki

log(P([Wi,·]Kc
i

= 0Kc
i
|Zi; X, σ2)) (9)

with,

P(Wi,·|Zi; X·,i, σ2) ∼ N (mi,Σi)

where,

[Σi]−1 =
1

σ2
(X†·,iX·,i) + C−1,

mi = Σi 1

σ2
(X†·,i)(Zi).

We can now expand Equation 9 (for a given i):

max
Ki

mi
Kc

i

†
[Σi

Kc
i
]−1mi

Kc
i
− log det Σi

Kc
i

which can now be solved as a combinatorial problem
to obtain the optimal support set. However, since the
complement set is usually much larger than the in-
tended sparse support set, it is more convenient to
transform the objective from being in form of Kc

i to
one with Ki. It turns out this is easy, again, because of
standard properties of the Gaussian distribution. The
equivalent objective function with Ki as the optimiza-
tion variable is:

max
Ki

riKi

†
[[Σi−1

]Ki
]−1riKi

− log det[Σi−1
]Ki
,

where ri = Σi−1
mi

(10)

Recall that ΣK is the submatrix of Σ supported on
K, similarly for [Σ−1]K. After solving the constrained
optimization problem specified by Equation 10 by a
greedy selection for K∗i , the resulting solution density,
q∗i , known to be the conditional by properties of the
Gaussian, is given by:

q∗i ∼ N (ci,Di)

where,

[Di]−1 = [Σi−1
]K∗i , ci = DiriK∗i

(11)

Recall, q∗i has support only on K∗i , so in Equation 11,
ci ∈ R|K∗i |,Di ∈ R|K∗i |×|K∗i |.
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5.2 M-step

Since the free energy view of the EM shows that any
M-step that increases F suffices, we maximize the log
likelihood portion of F for the M-step. It turns out
solving for {X, σ2} over F directly is computationally
hard, so M-step is done for one column of X at a time,
corresponding to row-wise E-step. If q∗ is the distri-
bution on W obtained from the E-step, the effective
M-step for column i of X is:

max
X,σ2

Eq∗ [log P(Zi|Wi,·; X·,i, σ
2)] (12)

For, any particular i ∈ [d], let ĉi represent the mean
vector ci expanded from |K∗i | to ambient dimension d,
with zeroes padded as needed. Equation 12 can be
written as:

max
X·,i,σ2

Eq∗ [
−1

2σ2
(Zi −X·,iWi,·)

†(Zi −X·,iWi,·)

−nd log σ2]

≡ max
X·,i,σ2

−1

2σ2
V(X·,i)− nd log σ2,

where,

V(X·,i) = X†·,iX·,itr
(

(cici
†

+ Di)
)
− 2ĉi

†
(X†·,iZi)

Clearly , X and σ2 can be updated separately, and in
closed form by taking the gradient and setting to 0.

X∗·,i =
ĉi
†
Zi

tr
(

(cici
†

+ Di)
) (13)

σ∗2 =
V(X·,i)

2nd
(14)

Algorithm 1 delineates the entire algorithm stepwise.

6 Experiments

We implement our method in Python using Numpy
and Scipy libraries as required. The inference is ef-
ficiently implemented by building the variance of the
sparsely supported posterior incrementally using block
matrix inversion formula while employing the greedy
search. This helps us avoid taking explicit inverses
that can lead to numeric inconsistencies. We compare
performance of submodular sparse probabilistic PCA
with other state of the art methods that are used in
practice to obtain lower dimensional representations
of the data. We also make use of the fact that greedy

Algorithm 1: EM Algorithm for SparsePCA

1: Input: k, r,C,T
2: Initialize ∀j 6= 1,X·,j = 0, X·,1 randomly
3:

4: while not converged do
5: for i = 1 . . . r do
6: Zi = T−

∑
j 6=i X·,jc

j

7: E-Step
8: Init: K∗i = {}
9: for j = 1 . . . k do

10: Update K∗i :
K∗i = arg max Eq. 10 over K∗i

⋃
{t},

∀t ∈ [d], t 6∈ K∗i
11: end for
12: Use Equation 11 to update ci and Di for q∗i
13: M-Step
14: Update X·,i using Equation 13
15: Update σ2 using Equation 14
16: end for
17: end while
18: return(q∗,X, σ2)

search in the E-step is trivially parallelizable - since
computations can be performed in parallel over all can-
didate dimensions, only to compare the final objective
value amongst them.

Selecting sparsity |K∗| is dependent on the data, do-
main and the problem at hand. We employ a Bayes
Factor approach as the criterion for selecting how
many dimensions to choose in the greedy E-step. We
observe the decay in increase in likelihood as we add
dimensions greedily, and stop when the increase is not
significant anymore.

6.1 Simulated Data

In real world datasets, even if the data conforms to the
assumptions made by a model, the underlying truth is
seldom known. For the case of sparse PCA, we would
not know the true underlying support for the princi-
pal components in the real datasets. Hence, we first
validate our model on simulated datasets. We tested
the proposed algorithm and some competing baselines
on several instances of toy data generated as follows.
We fix the number of data points n = 100, the ambi-
ent dimension size d = 1000, the rank r = 5, and the
sparsity at k = 20. We draw r principal components
from a Gaussian distribution in the ambient space and
zero out all but k randomly chosen dimensions in each
of them to form W. We draw X, the linear weights,
independently from N (0, 1). Finally, for each entry
of T = XW, a noise value is added that is drawn
from N (0, σ2) for various values of σ2. For metrics,
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Figure 1: Performance on Simulated Data

firstly we report the Receiver Operator Characteris-
tic Area Under the Curve (ROC-AUC) on the support
recovery of sparse matrix. Secondly, we look at the
reconstruction error as the average ||T− X̂Ŵ||, where

X̂ and Ŵ indicate the respective fitted matrices for
each of the methods. We compare against Online Dic-
tionary Learning (ODL) [15], and scikit’s sparsePCA
and standard PCA. We use scikit’s implementation for
these[20]. ‘Truth’ in both the graphs is the value ob-
tained using the correct generating parameters. For
clarity, we have not included results from methods
such as GPower. The presented models are the ones
that are usually considered for recovering underlying
bases, or for sparse reconstruction.

The results are summarized in Figure 1. We simulate
10 different datasets and graph the average values of
AUC and reconstruction error. The figure shows how
methods such as PCA perform well on reconstruction
error but are not sparse as they overfit by including the
noise dimensions as well. On the other hand, scikit’s
sparsePCA does reasonably well on capturing the un-
derlying support but does not reconstruct well. Our
method (SubmodPCA) does well on reconstruction er-
ror while also consistently recovering support, and de-
grades more gracefully as the noise increases.

6.2 fMRI data

Resting state (Functional Magnetic Resonance Imag-
ing) fMRI data are commonly analyzed in order to
identify coherently modulated brain networks that re-
flect intrinsic brain connectivity, which can vary in as-
sociation with disease and phenotypic variables. We
examined the performance of the present method on a
resting-state fMRI scan lasting 10 minutes (3T whole-
brain multiband EPI, TR=1.16 secs, 2.4 mm resolu-
tion), obtained from a healthy adult subject. Data

were processed using a standard processing stream in-
cluding motion correction and brain extraction (FSL).

The data originally captured has 518 data points,
and over 100,000 dimensions. The ambient set of
dimensions are clustered to fewer dimensions using
the spatially constrained Ward hierarchical cluster-
ing approach of [16], to produce three smaller dimen-
sional datasets with 100, 1000, 10000 dimensions. This
makes the dataset challenging to deal with because we
have cases where the dimensionality exceeds the num-
ber of datapoints.

We examined the support recovered from these data
after estimating four components using our method.
The first three components were largely restricted to
regions reflecting motion artifacts, which suggests that
this method may have utility in the detection and
removal of artifacts from fMRI data (similar to pre-
vious use of ICA by Tohka et al. [25]). Figure 2
shows the brain map generated using the first prin-
cipal component extracted using our algorithm. For
the three datasets, we compare the ratio of variance
explained by the k-sparse first principal component
vector (i.e. number of non-zero entries is k) to the
total variance in the dataset, for varying values of
k. We compare against methods: Generalized Power
Method [11] (Gpower), PCA via Low rank [19] (LR-
PCA), Truncated Power Method [28] (Tpower), On-
line Dictionary Learning [15] (ODL) and Full Regu-
larized Path Sparse PCA [6] (PathSPCA). For com-
parison, we run the standard PCA (non-sparse), and
plot the ratio of explained variance along with all the
above mentioned methods. Figure 3 shows the plots
for all the three datasets. Note that Gpower and ODL
take a regularization parameter rather than sparsity
level directly. For both of them, the regularization pa-
rameter was adjusted to reach the intended sparsity
level and those results are reported. For LRPCA, the
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Figure 2: A projection of the first sparse component (shown in red) onto the mean fMRI image. The component
is seen primarily in regions at the frontal surface as well as in the ventricles, consistent with motion artifact.

authors had implementation for rank =1 and higher
ranks. The numbers we report are for rank=2 for
d=100 and d=1000 and rank=1 for d=10000. This
is because rank=2 for d=10000 was too slow and did
not finish after 2 days. We did not notice significant
difference in numbers between rank=1 and rank=2 for
lower d. The plots clearly show that our method (Sub-
modPCA) performs consistently at least as well as any
of the other sparse methods.

7 Conclusion

We have presented a novel method for variational in-
ference under sparsity constraints by information pro-
jection, and applied it with the probabilistic PCA
framework for sparse PCA. We also showed consistent
performance vis-a-vis various baselines. The sparse
inference method is general enough to be applied to
other algorithms requiring sparsity in latent variables,
such as sparse topic coding, and it is a natural future
direction to take. This would be an interesting direc-
tion, since it would require exploration of distributions
other than the Gaussian, so a lot of the algebra that
worked out nicely may not hold. The sparse prob-
abilistic framework can also be applied for problems
like sparse inverse covariance estimation, and we plan
to explore this direction in near future too.
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Figure 3: Performance on fMRI data
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