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Preliminaries

We begin additional definitions that will be useful for the proofs.

Let X be either a countable set, or a complete separable metric space equipped with the standard
Borel σ-algebra of measurable sets, and let Q and P be probability measures on X. The relative
entropy, also known as the Kullback-Leibler divergence (KL divergence) of Q with respect to P is
given by:

KL(Q‖P ) =

∫
X

dQ

dP
(x) log

dQ

dP
(x)dP (x),

where dQ
dP is the Radon-Nikodym derivative, existence of which requires that Q is absolutely con-

tinuous with respect to P . Let P 3 p denote the set of probability densities on X.

We make the following assumption:

Assumption 1. All distributions P are absolutely continuous with respect to the dominating mea-
sure ν so there exists a density p ∈ P that satisfies dP = pdν.

and the condition:

Condition 2. The sample space X is a subset of Euclidean space with ν given by the Lebesgue
measure. Alternatively, X is a countable set with ν given by the counting measure.

Let E be the expectation operator, which we denote using densities as Ep [ f ] =
∫
X
p(x)f(x)dx to

simplify notation. We suppress the dependence on the random variable when the expectation and
the relative entropy are clear from context. We define a characteristic function of the set A ⊂ X,
denoted by φA as the function φA : X 7→ R+ that satisfies φA(x) > 0 for x /∈ A, and φA(x) = 0
otherwise e.g. δX\A is a characteristic function of A. Note that this definition differs slightly from the
standard definition in convex analysis, where the characteristic function evaluates to∞ outside the
set.

Priors for structured variables

Our first result is that the information projection a domain restricted density set is given by the
restriction of the base measure to the support set. To begin, we show that the support constraint is
equivalent to a particular expectation constraint.
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Lemma. Let FA be the domain restricted density set of A, φA be its characteristic function, and
G = {q ∈ P | Eq [φA(x) ] = 0} ⊂ P . Then FA = G.

Proof. [FA ⊂ G]: Let q ∈ FA, then Eq [φA ] = 0, thus q ∈ G. [G ⊂ FA]: Let q ∈ G, the non-
negativity of φA implies that for each x ∈ X, either q = 0 or φA = 0.

The following Lemma from Altun and Smola [1] characterizes relative entropy minimization subject
to norm ball expectation constraints. For simplicity, the theorem is modified to address the special
case of the result where a solution exists and the infimum is attained.
Lemma (Altun and Smola [1]).

min
q∈P

KL(q‖p) s.t. Eq [β ] = b

= max
λ
〈λ,b〉 − log

∫
X

p(x)e〈λ,β(x)〉dx+ e−1

and the unique solution is given by q∗(x) = p(x)e〈λ∗,β(z)〉−G(λ∗) where λ∗ is the dual solution and
G(λ∗) ensures normalization.

We can now show the first main result, investigating the relationship between restriction of densities
and information projection subject to domain constraints.
Theorem 3. Under Condition 2, the information projection of the density p to the constraint set FA,
if it exists, is the restriction of p to the domain A.

Proof. The information projection of p to FA is equivalent to:

min
q∈P

KL(q‖p) s.t. Eq [φA ] = 0. (1)

The solution is given by q∗(z) = p(x)e〈λ∗,φA〉−G(λ∗) , where:

λ∗ = argmax
λ

〈λ, 0〉 − log

∫
X
p(x)e〈λ,φA(x)〉dx.

Clearly λ∗ = −∞, thus e〈λ∗,φA(x)〉 → δA(x) via standard limit arguments, so q∗ =
p(x)δA(x)/

∫
A
p(x)dx.

Corollary 4. Consider the product space X = W×Y. Let domain constraint be given by W×{ŷ} for
some ŷ ∈ Y. Under Condition 2, the information projection of p toFW×{ŷ} is given by p(w|y = ŷ)δŷ.

Proof. Follows directly from Theorem 3.

Theorem 5. Let π : [n] 7→ [n] be a permutation function and {Cπ(i) | Cπ(i) ⊂ X} represent a
sequence of sets with non empty intersection B =

⋂
Ci 6= ∅. Given a base density p, let q0 = p, and

define the sequence of information projections:

qi = argmin
q∈FCπ(i)

KL(q‖qi−1),

Under Condition 2, q∗ = qN is independent of π. Further q∗ = min
q∈FB

KL(q‖p).

Proof. Consider the case when n = 2, then π : [1, 2] 7→ {[1, 2], [2, 1]}. From Theorem 3, we have
that q2(x) ∝ p(x)δC1(x)δC2(x) = p(x)δB(x) independent of π. The proof is extended to n > 2 by
induction.

We propose approximate inference via the following rule:

pS∗,ŷ = argmin
q∈D×F{ŷ}

KL(q(w, y)‖pA(w, y)) = argmin
S

[
min

q∈FS×{ŷ}
KL(q(w, y)‖pA(w, y))

]
. (2)

The solution is given by pS∗,ŷ(w, y) = pS∗(w|ŷ)δŷ.
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Corollary 6. Let pS∗,ŷ(w, y) be the solution of (2), then the posterior distribution pS∗(w|ŷ) is given
by:

pS∗(w|ŷ) = argmin
q∈D

KL(q(w)‖pA(w|ŷ)) = argmin
q∈D

KL(q(w)‖p(w|ŷ)). (3)

Proof. The proof follows from repeated application of Theorem 5. The first equality follows from
solving (2) in two steps. The first step involves the information projection of pA(w, y) to FA×{ŷ}.
The second step is the information projection of the resulting solution pA(w|ŷ)δŷ to the set D×F{ŷ}.
The solution is equivalent to the direct information projection of pA(w, y) to D× F{ŷ} as solved by
(2) by Theorem 5.

The second equality follows from the projection of p(w, y) to FW×{ŷ}, followed by the information
projection of the resulting solution p(w|ŷ)δŷ to the set D × F{ŷ}. Since D ⊂ A, the equality holds
by Theorem 5.

Corollary 7. Let pS∗,ŷ(w, y) be the solution of (2). Define the density pS∗(w) as:

pS∗(w) = argmin
q∈FS∗

KL(q(w)‖pA(w)) = argmin
q∈FS∗

KL(q(w)‖p(w)). (4)

then pS∗(w) is the prior distribution corresponding to the Bayesian posterior pS∗(w|ŷ)

Proof. Let pS∗(w) be the projection of pA(w) to the set FS∗ , then by Corollary 4, the posterior
associated with the observation of ŷ is given by pS∗(w|ŷ).
The second equality follows from the projection of p(w) to FS∗ . As S∗ ⊂ A, the equality holds by
Theorem 5.

Priors for structured variables

The following theorem explores the submodularity of subset selection using relative entropy. The
presented theorem is a special case of the result of Madiman and Tetali [2] with the application of
Assumption 1. For simplicity, the theorem is modified to address the special case.

Theorem (Madiman and Tetali [2]). Let q ∈ P and p ∈ P be probability densities on X̃d, and
let qS and pS be their marginals on X̃|s|, such that the set function F (s) : ℘(d) 7→ [0,∞], F (s) =
−KL(qS‖pS) does not take the value −∞ for any s ∈ ℘(d), then F (s) is submodular.

In the following, we show that subset selection loss function J(s) is monotone submodular.

Theorem 8. Let J : ℘(d) 7→ R, J(s) = log p(xS′ = cS′), and define J̃(s) = J(s) − J(∅), then
J̃(s) is normalized and monotone submodular.

Proof. Normalized: By definition 0 ≤ J̃(s) ≤ −J(∅).
Monotone: Let c ⊂ s, then:

p(xM\C) = p(xM\S,xM\S∩C) ≤ p(xM\S)

Submodular: Consider F (s) = log p(xS = cS). Recall that p is bounded, so F (s) is bounded above
and below.

Recall the following identity: KL(δ{a}‖p) = Eδ{a} [ log δ{a} ] − Eδ{a} [ log p ] = − log p(x =

a), which follows by standard limit arguments for Eδ{a} [ log g(x) ] → 0 with an appropriate
g(x)→ δ{a}. Thus, we may define F (s) = KL(δS‖p).
Applying the theorem of Madiman and Tetali [2], it follows that F (s) is submodular. Finally, we
note that if F (s) is submodular, so is its reflection J(s) = F ([d]\s).

While maximization of submodular functions is generally NP-hard, a simple greedy forward selec-
tion heuristic (Algorithm 1), has been shown to perform almost as well as the optimal in practice,
and is known to have strong theoretical guarantees.
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Algorithm 1 Greedy selection, max J(s) s.t. |s| = k

Input: k, s = ∅
while |s| < k do

foreach i ∈ [d]\s, fi = J(s ∪ i)− J(s)
s = s ∪ {argmax fi}

end while
Return: s.

Theorem 9 (Nemhauser et al. [3]). In the case of any normalized, monotonic submodular function
F, the set s∗ obtained by the greedy algorithm achieves at least a constant fraction

(
1− 1

e

)
of the

objective value obtained by the optimal solution i.e. F (s∗) =
(
1− 1

e

)
max
|s|≤k

F (s).

Corollary 10. Let J(s) be defined as in Theorem 8 and suppose the base density is product form i.e.
p(x) =

∏d
i=1 p(xi), then J(s) is linear.

Proof. Define 1s ∈ Rd as the vector (1s)i = 1 if i ∈ s and zero otherwise, and define the vector h ∈
Rd taking values hi = p(xi = ci). When p(x) =

∏d
i=1 p(xi), we have that J(s) = log p(xS′ =

cS′) =
∑
i∈s′ log p(xi) = 〈1s′ ,h〉, a linear function.

Gaussian linear regression with sparse structure

Consider a generative model for n samples given by a linear model combined with Gaussian noise
yi|w,zi = w>zi + ε, where the response yi ∈ R, the feature vector zi ∈ Rd, and the weight vector
w ∈ Rd. The weights are drawn from the zero mean Gaussian distribution w ∼ N (0,C), where
C ∈ Rd×d is the prior covariance matrix, and its inverse D = C−1 ∈ Rd×d is the corresponding
prior precision matrix. The noise is drawn from a univariate Gaussian ε ∈ R, ε ∼ N

(
0, σ2

)
. We set

λ = 1
σ2 . Let y ∈ Rn represent the responses collected into a vector with y(i) = yi, and Z ∈ Rn×d

represent the features in matrix form, so Z(i, :) = z>i .

As the prior and the likelihood are Gaussian, the unconstrained posterior distribution P (w|y) is
Gaussian, represented as N (µ,Σ), where Σ ∈ Rd×d is the posterior covariance matrix, and its
inverse Λ = S−1 ∈ Rd×d is the corresponding precision matrix. The posterior precision is given
by Λ = D + λZ>Z. The posterior mean µ ∈ Rd is given by µ = λΛZ>y. Recall that µS ∈ R|s|

is the subvector given by µS = {µ(i) | i ∈ s}. For matrices, define ΣS,C ∈ R|s|×|c| as the submatrix
{Σ(i, , j) | i ∈ s, j ∈ c}. We also define the linear projection matrix PS ∈ Rd×|s|, PS : R

|s| 7→ Rd

by imputing zeros as missing entries.

We set the default value ci = 0 ∀ i ∈ [d]. For any fixed s, the information projection is given by the
restriction of P (w|y) as the conditional distribution:

P (wS|wS′ = 0,y) = N (mS|S′ ,ΣS|S′) , (5)

where mS|S′ ∈ R|s|, given by mS|S′ = µS + Λ−1S,S ΛS,S′µS. Approximate inference is applied using
the convex sparse subsets, equivalent to the submodular optimization. The resulting cost function
(up to constants) is given by:

J(s) = µ>S′Σ
−1
S′,S′µS′ − log |ΣS′,S′ |+ a1 = (µ−PSmS|S′)

>Λ(µ−PSmS|S′)− log |ΛS,S|, (6)

where a1 is an additive constant. The second equality may be computed directly, but is most easily
derived by directly solving the information projection (3) for a fixed s. Interpreting the resulting
form, we find that the subsets are selected in order to minimize the distance between the conditional
mean and marginal mean vector and the determinant term adds regularity depending on the coupling
between the variables.
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Additional Experiments

Functional Neuroimaging Data

To evaluate all the models, we applied additional dimensionality reduction to the fMRI data resulting
in 10,000 voxels. The spatially constrained Ward hierarchical clustering approach of Michel et al. [4]
was used for all dimensionality reduction. The predictive R2 are: Sparse-G (0.0167), Lasso (-0.299),
Ridge (-0.542), ARD (-0.155), SpikeSlabFull (-0.250), SpikeSlab0.5 (-0.270) and SpikeSlabKL (-
0.183). As expected, all models (apart from ARD) had worse results upon dimensionality reduction.
Again, the projection approach improved the performance of the Spike and Slab models.
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Figure 1: Full size simulated data performance in terms of support recovery (AUC )

6



40 30 20 10 0 -10
Signal-to-Noise Ratio(dB)

0.5

0.6

0.7

0.8

0.9

1.0

S
u
p
p
o
rt

 A
U

C

Sparse-G
Lasso
SpikeSlab0.5
SpikeSlabKL
ARD

(a) AUC as a function of SNR

40 30 20 10 0 -10
Signal-to-Noise Ratio(dB)

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Sparse-G
Lasso
Ridge
SpikeSlab0.5
SpikeSlabKL
ARD
SpikeSlabFull

(b) R2 as a function of SNR

Figure 2: Full size simulated data performance in terms of regression performance (R2 )
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