
A Deflation Method for Structured Probabilistic PCA

Rajiv Khanna∗ Joydeep Ghosh † Russell Poldrack ‡ Oluwasanmi Koyejo §

Abstract
Modern treatments of structured Principal Component Anal-
ysis often focus on the estimation of a single component
under various assumptions or priors, such as sparsity and
smoothness, and then the procedure is extended to multiple
components by sequential estimation interleaved with defla-
tion. While prior work has highlighted the importance of
proper deflation for ensuring the quality of the estimated com-
ponents, to our knowledge, proposed techniques have only
been developed and applied to non-probabilistic principal
component analyses, and are not trivially extended to prob-
abilistic analyses. This work introduces a novel, robust and
efficient deflation method for Probabilistic Principal Compo-
nent Analysis using tools recently developed for constrained
probabilistic estimation via information projection. The com-
ponents estimated using the proposed deflation regain some
of the interpretability of classic PCA such as straightforward
estimates of variance explained, while retaining the ability to
incorporate rich prior structure. Moreover, sequential estima-
tion allows for scaling probabilistic techniques to be at par
with their deterministic counterparts. Experimental results
on simulated data demonstrate the utility of the proposed
deflation in terms of component recovery, and evaluation on
neuroimaging data show both qualitative and quantitative im-
provements in the quality of the estimated components. We
also present timing experiments on real data to illustrate the
importance of sequential estimation with proper deflation for
scalability.

1 Introduction
Principal Component Analysis (PCA) is a well known tech-
nique for data exploration and dimensionality reduction [5].
The goal of PCA is to represent a centered data matrix as a
linear combination of a few basis vectors (known as compo-
nents) combined using weights. In the classical deterministic
setting, the components are extracted as orthonormal vectors
that maximize the explained variance in the data matrix. Be-
yond classic PCA, various extensions have been proposed
that incorporate sparsity and/or other domain structure, or are
designed to incorporate useful statistical properties such as
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noise tolerance in high dimensions [6, 26, 1, 7, 16]. Most
modern treatments of Principal Component Analysis and its
extensions focus on the estimation of a single component,
leaving multi-component extensions to sequential estimation
interleaved with deflation. This is more than a mere con-
venience, as sequential estimation may be necessary to en-
able scalability for modern “big data” problems, where one
may be interested in computing only the top few principal
components given a high-dimensional ambient feature space.
Further, selecting the appropriate number of components (the
rank) via sequential estimation avoids the significant compu-
tational overhead of re-estimating all the components each
time the rank is changed, which is required without proper
deflation.

Informally, the purpose of deflation is to minimize the
influence of previously computed components on subsequent
components, most often by assuming that subsequent com-
ponents are mutually orthogonal. In the classic setting, or-
thogonal deflation can be accomplished simply by computing
the residual1, as the orthogonality of the components en-
sures that the result is equivalent to the residual of the data
matrix row-projected onto the subspace of the first compo-
nent [4, 2]. More sophisticated, but equivalent approaches
include Hotelling’s deflation [4] and Schur’s complement de-
flation [25], applied to the data covariance matrix. Based
on this intuition, much of the early work applied classic
PCA deflation to more structured settings without justifica-
tion. In response, Mackey [13] investigated the effect of
deflation choices on the quality of inferences from sparse
PCA, showing that many classic PCA deflation techniques
may no longer be appropriate or equivalent. In particular,
Mackey [13] showed that careless deflation does not preserve
orthogonality and could lead to pathological results such as
estimating the same component multiple times without ex-
plaining additional variance.

Probabilistic models remain one of the most popular ap-
proaches for data analysis. The generative view builds notions
of parameter uncertainty into inferential procedure. Proba-
bilistic models also simplify the process of incorporating rich
domain knowledge via intelligent construction of prior distri-
butions. Our work follows research by several authors who
have explored probabilistic variants of principal components

1given by the difference between the data and the rank one estimate i.e.
the outer product of the component and the weight vectors



analysis [3, 18, 8]. Despite the rich prior literature on PCA,
research has primarily focused on batch inferences and does
not incorporate notions of sequential component estimation
or deflation. Further, proposed techniques for deflation have
only focused non-probabilistic Principal Component Analy-
ses, and are not trivially extensible to probabilistic analyses.

In this manuscript, we seek to bridge this gap in the litera-
ture by first highlighting issues that may occur with improper
deflation, and then presenting a robust and efficient deflation
approach for probabilistic PCA (PPCA) that solves for each
component sequentially, such that the posterior distribution of
subsequent components are supported only on the subspace
orthogonal to the subspace spanned by means of previously
estimated component distributions. This approach guarantees
orthogonality in the collected matrix component means. We
also apply the framework to sparse PPCA and show that the
means of components so obtained correspond to those ob-
tained by known deterministic techniques in a special case.
To the best of our knowledge, the correspondence between
a sparse PPCA algorithm and a sparse deterministic PCA
algorithm has not been established before. The components
estimated using the proposed deflation regain some of the
interpretability of classic principal component analysis such
as straightforward estimates of variance explained, while re-
taining the ability to incorporate rich prior structure. Such
simple interpretability if lost when doing joint estimation,
since joint estimation only recovers the components upto a
rotation. Furthermore, the issue of scalability from sequential
estimation can not be overstated. We refer to prior work in
the Bayesian literature evaluated on data with dimensionality
< O(103) e.g. [19] used data of dimensionality 35, while
deterministic approaches are routinely applied to > O(104)
data. Our proposal pushes the scalability of probabilistic
methods on par with their deterministic counterparts.

Our key contributions are as follows:

• we propose a novel deflation technique for probabilis-
tic PCA via information projection of the posterior of
each subsequent component onto the subspace orthog-
onal to the means of previously estimated component
distributions.

• we explore an application of the proposed deflation
approach to sparse probabilistic PCA

• we establish a correspondence of the proposed (sparse
and non-sparse) PPCA algorithms to known determinis-
tic techniques under special conditions, which may be
of independent interest.

Experimental evaluation on neuroimaging data shows that
deflation leads to improved interpretability (qualitative eval-
uation) and can improve variance explained by each compo-
nent (quantitative evaluation). Furthermore, we also present

empirical evidence of scalability by reporting the timing of
sequential and joint estimation of components.

Notation: We represent vectors as small letter bolds
e.g. u. Matrices are represented by capital bolds e.g. X,T.
Vector/matrix transposes are represented by superscript †.
Identity matrix is represented as I. The ith row of a matrix
M is indexed as Mi,·, while jth column is M·,j . Sets are
represented by sans serif fonts e.g. S. For a vector u ∈ Rd,
and a set S of support dimensions with |S| = k, k ≤ d,
uS ∈ Rk denotes subvector of u supported on S. Let tr(X)
denote the trace of the matrix X.

2 Background and Related Work
Let T ∈ Rn×d represent the data matrix, with n samples and
dimensionality d. Without loss of generality, we assume that
the data matrix is mean centered in each dimension. Given a
desired rank r, PCA decomposes a centered data matrix into
components W ∈ Rr×d and weights X ∈ Rn×r.

In the classical deterministic setting, components are
extracted as orthonormal vectors that maximize the explained
variance in the data matrix. The first principal component
w ∈ Rd may be computed as:

(2.1) max
||w||2=1

w†Σw,

where Σ = T†T ∈ Rd×d is the data covariance matrix. The
solution is the eigenvector of the covariance matrix which is
associated with the largest eigenvalue. The associated vari-
ance explained is simply the value of the cost function (2.1)
at the solution. To obtain the next component, the covari-
ance matrix is deflated to remove the variance component
explained, then (2.1) is re-solved with the deflated covariance.
Using Hotelling’s deflation [4], the subsequent covariance
matrix at step i+1 is computed from the ith covariance matrix
as:

(2.2) Σi+1 = Σi −wiw
†
iΣiwiw

†
i ,

where Σ0 = Σ and w0 is the first component. Alternatives to
Hotelling’s deflation include Schur complement deflation and
orthogonal projection (see Mackey [13] for more details).

While the covariance approach is perhaps the most
popular, an alternative and equivalent approach is to estimate
both the components and the weights to minimize the
reconstruction error [17] as:

(2.3) min
x,||w||2=1

||T− xw†||2F .

It is clear that the reconstruction error view of classic PCA
is equivalent to modeling using the Gaussian likelihood. The
optimal w is given by the right singular vector of the data
matrix which is associated with the largest singular value
and x is the corresponding left singular vector multiplied



by the singular value. The associated variance explained
can be computed using the same equation as the covariance
approach (2.1) at the solution. The reconstruction error view
suggests the naïve deflation for the subsequent components
by replacing the data matrix with the residual in (2.3), given
by:

(2.4) Ti+1 = Ti − xiw
†
i ,

where T0 = T and x0 is the first weight vector. The naïve
deflation is equivalent to other deflation techniques in the
classic setting.

Probabilistic PCA (PPCA) is the probabilistic extension
of the deterministic PCA. The likelihood is chosen to match
the reconstruction error view of the classic PCA. The compo-
nents (wi) are random variables with a prior that is designed
by domain knowledge. The prior can be used to incorporate
structural properties such as smoothness, sparsity, and non-
negativity into the components as suggested by the domain.
The factorization can then be obtained by maximizing the
log likelihood, typically by EM algorithm to solve for all r
components at the same time. See [21] for details.

Related Work on PPCA: Probabilistic PCA was first
proposed by Tipping and Bishop [21] based on an extension of
the well established component models in statistics. Tipping
and Bishop [21] showed that the result was equivalent to
standard PCA under certain choices of hyperparameters,
and generalized PPCA to incorporate priors on the weights.
Šmídl and Quinn [19] extended this work to a full Bayesian
treatment which included priors on both components and
weights, and considered the use of appropriate priors on
the components to enforce orthogonality. Beyond standard
PCA, several authors have proposed additional priors to
encourage sparsity or non-negativity on the components [3,
18]. Recently Khanna et al. [8] proposed a submodular
formulation for sparse probabilistic PCA but, like other prior
work, focused on single component estimation rather than on
(sequential) deflation.

2.1 Constrained Probabilistic Inference via Informa-
tion Projection In the interest of a self contained discussion,
this section outlines relevant background on constrained prob-
abilistic inference via information projection, which will be
useful for the development of our proposed deflation tech-
nique. We begin with the definitions of the Kullback-Leibler
divergence and information projection. Let X represent the
sample space of interest. Let P represent the set of bounded
densities supported on X.

Assumptions: The sample space X is either a subset of
the Euclidean space with associated Lebesgue measure as
the dominating measure, or a countable set with associated
counting measure. All probability distributions considered
are absolutely continuous w.r.t the respective dominating mea-
sures, have bounded densities. These assumptions allow us to

define consistent conditional densities on subsets S ⊂ X of
measure 0 by disintegration, and allow for well-defined infor-
mation projection onto S. Furthermore, the notion that such
restriction can be posed as a variational optimization problem
allows us to incorporate sparsity constraints. See [11] for
more details.

Information Projection: Let p ∈ P and q ∈ P . We
use KL(q‖p) to denote the Kullback-Leibler divergence [12]
between p and q. Given a set Q ⊆ P , the information
projection of p ∈ P to the set Q is given by:

inf
q∈Q

KL(q‖p).

As we only consider closed subsets, inf above can be replaced
by min. Let S ⊂ X represent a closed subset of X, so PS is the
set of all probability densities supported on S. Our analysis
will focus on the information projection of p onto PS. We
will sometimes refer to this as the information of p to the set
S.

Domain restriction: Let p ∈ P be a probability density
on X, and let S ⊂ X, then pS is the S-restriction of p:
pS(x) = 0 if x /∈ S, pS(x) = p(x)∫

s∈S p(s)ds
if x ∈ S.

The following Lemma establishes the equivalence of
domain restriction and a certain information projection. As
a result, domain restriction may be solved as a variational
optimization problem.

LEMMA 2.1. (KOYEJO ET AL. [11]) Let p be a probability
density defined on a measurable set X, S ⊂ X be a closed set,
pS be the S-restriction of p, PS be the set of all probability
distributions supported on S then pS = minq∈PS

KL(q‖p).

2.2 Information Projection onto Subspaces The results
in this section hold for general subsets of the Euclidean
space, but for our purposes we will restrict our attention
to subspaces. We overload the nomenclature a little and
use “information projection onto the set of distributions
supported on a subspace" and “information projection onto
the subspace" interchangeably. LetM be the target subspace
onto which we aim to restrict a probability distribution p. We
will apply Lemma 2.1 to pose it as a variational optimization
problem. To encode the constraint set, we make use of the
setup of Bayesian optimization under expectation constraints
which has been well studied in the literature [9]. The
following proposition characterizes information projection
onto subspaces.

PROPOSITION 2.1. Consider a function φM : Rd → R
which satisfies φM(x) = 0 if x ∈ M, and φM(x) > 0
if x /∈ M. The restriction of the density p to a subspaceM
can be obtained as:

(2.5) argmin
q

KL(q‖p) s.t. Eq[φM(x)] = 0.



Figure 1: Plate model for Probabilistic PCA. The matrix C is
the prior design matrix. In classical PPCA [21], C is identity

2.2.1 Information Projection of Gaussian Distributions
The special case where p is a Gaussian is of particular interest
to our development of deflation for sparse PPCA. LetN (µ,S)
represent a multivariate Gaussian distribution with mean
µ ∈ Rd and covariance S ∈ Rd×d. Let M⊥ represent
the orthogonal complement of a subspace M. We denote
the projection matrix associated with the subspace M by
PM. We can write φM(x) := x†PM⊥x. It is clear that
x ∈M =⇒ φM(x) = 0 and x /∈M =⇒ φM(x) > 0.

When p is Gaussian, it is known that the information
projection onto PM is also a Gaussian distribution [10, 9].
We emphasize that this is not an assumption, but rather a
property of the KL divergence. Thus, the search for the
projection may be restricted to optimization over the members
of the family q ∼ N (a,B) identified by the mean and
covariance {a,B}. The constraint in (2.5) can be expanded
as Eq[φM(x)] = 0 =⇒ tr

(
PM⊥aa† + PM⊥B

)
= 0 =⇒

tr
(
PM⊥aa†

)
= 0 and tr(PM⊥B) = 0 (since all projection

matrices are positive semidefinite). Expanding Equation 2.5
using definition of KL between two multivariate Gaussian
distributions results in the decoupled optimization problems:

min
B

tr
(
S−1B

)
− ln det B s.t. tr(PM⊥B) = 0,

min
a

(a− µ)†S−1(a− µ) s.t. tr
(
PM⊥aa†

)
= 0.

These are solved by (B∗)−1 = PMS−1PM and a∗ =
B∗PMS−1µ. Thus, the information projection of p ∼
N (µ,Σ) to the subspaceM is given by q∗ ∼ N (a∗,B∗).

3 Deflation for Probabilistic PCA
We consider n observations of d dimensional vectors stacked
as the data matrix T ∈ Rn×d. Without loss of generality, we
assume that the matrix is centered i.e. each column has mean
0. The data matrix is modeled as a product of parameter X
and latent variable W which has the matrix-variate normal
prior MVN(0, C, I) where, C is the column covariance
matrix, and I (identity matrix) is the row covariance matrix.
The observation model is T = XW + ε, where ε is the noise
with prior εij ∼ N (0, σ2). See Figure 1.

Motivating Example: Consider the following example
showing the a potential failure of probabilistic PCA with
naïve deflation. We selected the components and sample the

weights and noise as: W =

1 0
0 1
0 0

 , xk ∼ N (0, I), en ∼

N (0, I), where n = 100, 000.Note that this generative
scheme adheres to the specification of the PPCA above.
We applied probabilistic PCA of Tipping and Bishop [21]
sequentially using the naïve deflation of (2.4) based on the
estimated expected component. As shown in Figure 2, the
procedure estimated degenerate components with expected
value:

[
1 1

0.1 −0.1
0 0

]
rounded to two significant digits. This is

partially due to the noise and the effects of prior regularization.
Such a degenerate result was not observed for the full model
fit or with the proposed deflation that enforces orthogonality,
where the correct components were recovered, and this seems
to be specific to the naïve deflation. Fitting a full model
however is less scalable, and loses on the opportunity of
run time model selection. Moreover, for a full model fit,
the interpretation of individual components as directions
maximizing explained variance sequentially is also no longer
valid. An alternative to retain such an interpretation would be
to add orthogonality in the full model which may not be easy
as it requires handling distributions on the Grassmanian [24].

3.1 Inference for Probabilistic PCA via Variational EM
Probabilistic PCA is typically solved by an EM algorithm
which obviates construction of the full covariance matrix,
and instead enables working with the data matrix while
returning both the weights and the components. Maximizing
the negative log-likelihood can be shown to be equivalent to
maximizing a free energy function F (3.6). The E-step can
be viewed as the search over the space of distributions q of
the latent variables W, keeping the parameters Θ fixed (3.7),
and the M-step can be interpreted to be the search over the
parameter space, keeping the latent variables distribution q
fixed (3.8). The cost function for the EM is given by [15]:
(3.6)
F (q(W),Θ) = −KL(q(W)‖p(W|T; Θ)) + log p(T; Θ).

with the E-step and M-step given by:

E-step: max
q

F (q(W),Θ),(3.7)

M-step: max
Θ

F (q(W),Θ).(3.8)

This view of the EM algorithm provides the flexibility to
design algorithms with any E and M steps that monotonically
increase F . An unconstrained optimization over q in
(3.7) returns the posterior p(W|T; Θ). Variational methods
perform the search for best q over a constrained set [22]
using constrained KL minimization. Let D be the set of
distributions over W that fully factorize over individual rows



(a) Ground Truth (b) Estimation via naive deflation (c) Estimation via proposed deflation

Figure 2: Simulated data example showing incorrect estimates using the naïve deflation, while the proposed deflation
technique recovers close to the ground truth.

of W : q(W) =
∏r

i=1 qi(Wi,·), and ∀i, qi is Gaussian. We
restrict the search over q to D. This restriction is known
as the mean field variational approximation. Based on the
factorization assumption, the KL minimization separates out
for each i and can be solved for each qi iteratively.

Naïve Deflation: As generative models do not modify
the data matrix directly, deflation is achieved implicitly by
fixing the distributions of the estimated components q(W\i)
when estimating the distribution of the new component q(wi).
Following the E-step (3.7), the effect on the model is straight-
forward to compute as (up to additive and multiplicative con-
stants):

Eq(W\i)

[
logP (T|X,W\i,xi,wi)

]
∝
∣∣∣∣∣∣T−XEq(W\i)

[
W\i

]
− xiw

†
i

∣∣∣∣∣∣2
F
.

With components j < i fixed, it is clear that this is equivalent
to the naïve deflation of (2.4) using the estimated posterior
mean.

Deflation is well-studied for the deterministic PCA, but
we are not aware of any previous work that address proper
deflation while solving for probabilistic components incre-
mentally. While the EM algorithm returns full distribution of
components, typically normalized expected values are used
as point estimates. The standard approach for deflation is the
naïve approach outlined in (2.4), using the expected value of
the component with respect to the posterior. This is given by
Zi = T − Σj<iX

†
.,jmj , and is a direct consequence of the

variational estimation [8].

3.2 Orthogonal Deflation We propose deflation follow-
ing the classic definition of orthogonality. Specifically, we
consider orthogonality between the posterior means of the
estimated subspaces. This is implemented using the infor-
mation projection approach outlined in Section 2.2. LetMi

be subspace spanned by means of first i components i.e. the
subspace spanned by

⋃i
j=1 E[Wj.,]. We restrict the support

of component (i+ 1) to beMi
⊥.

Let Zi = T − Σj<iX.,jE[Wj,.]. Following the
formula for information projection for Gaussians derived
in Section 2.2.1, the E-step update for the ith component is
given by qi(Wi,.) ∼ N (mi,Σi) where:

(3.9)
Σ−1

i = PM(i−1)
⊥

(
1

σ2
(X†.,iX.,i)I + C−1

)
PM(i−1)

⊥
,

mi =
1

σ2
ΣiPM(i−1)

⊥
Z†iX.,i.

Note that (3.9) without the projection operator PM⊥
would be the posterior under the standard mean field as-
sumption, the projection operator is added as a result of the
variational E-step that performs the information projection.

The M-step is also straightforward to derive as:

(3.10)

X.,i =
Zimi

tr
(
mim

†
i + Σi

) ,
σ2 =

tr
(
Z†iZi

)
+ X†.,iX.,itr

(
mim

†
i + Σi

)
− 2m†iZ

†
iX.,i

nd
.

We term the resulting procedure of sequential estimation and
deflation Orthogonal Probabilistic PCA (oPPCA).

3.3 Reduction to PCA The orthogonal deflation is remi-
niscent of the Hotelling deflation on the data matrix. Indeed,
if C = I and mi are normalized, by substituting the value of
X.,i from the M-step into (3.9), we compute:

(3.11) Zi = T(I− Σj<iαjmjm
†
j)

for constants αi (which represent the explained variance by
component mi while like in PCA and PPCA, σ2 measures
the noise or unexplained variance).



PROPOSITION 3.1. If C = I the means of components
estimated by oPPCA correspond to the components estimated
by deterministic PCA.

Proof. Substitute the value of X.,1 from the M-step into the
update equation of m1 in the E-step equation to get m1 ∝
T†Tm1 which shows that solving for the first component
m1 is equivalent to performing power iterations on T†T.
From (3.11), for the subsequent components, solving for mi

is equivalent to performing power iterations on the deflated
matrix (I− Σj<iαjmjm

†
j)T

†T(I− Σj<iαjmjm
†
j).

4 Deflation for Sparse Probabilistic PCA (soPPCA)
The proposed deflation using the framework may also be
extended to sparse Probabilistic PCA, where the support of
components is to be restricted to a few dimensions. We
focus on the approach proposed by Khanna et al. [8] as it
directly utilizes information projection to impose sparsity on
the components. Thus, for component i and given ki < d,
we can directly extend the variational E-step to restrict the
support to the best ki dimensions in terms of the minimum
KL divergence. minimized.

Let Ski be the set of all subspaces of dimension ki
spanned by ki-sized subsets of the power set of set of standard
bases {ej , j ∈ [1..d]}. Also, let p̄i be the full posterior for
the ith component (before the information projection). The
variational E-step for sparse component Wi,. is given by:
(4.12)

min
Supp(q̄i(Wi,.))∈(P

M
(i−1)
⊥

∩S)

S∈Ski

KL(q̄i(Wi,.)‖p̄i(Wi,.|Zi)).

The support constraint on q̄ requires information projec-
tion onto an intersection of two sets. It can be shown that it
is equivalent to minimizing the constrained KL divergence
by enforcing the support constraints of each set one after
the other. This equivalence is due to a property of iterated
information projections (see Koyejo et al. [11] for details).
Combined with the proposed orthogonal deflation, and with
qi as defined in 3.9, the resulting E-step is solved via:

(4.13) min
Supp(q̄i(Wi,.))∈Ski

KL(q̄i(Wi,.)‖qi(Wi,.)),

Expanding the KL in the optimization problem (4.13),
we obtain the equivalent combinatorial problem:

(4.14)
max
S∈Ski

(PSri)†(PSΣ−1
i PS)−1(PSri)− log det PSΣ−1

i PS ,

where ri = Σ−1
i mi. Koyejo et al. [11] showed that the

resulting optimization problem is submodular, so a greedy
search is guaranteed to find a solution close to the global
optimal. This greedy approach has also be shown to be

effective in practice for linear regression [11] and sparse
PPCA [8]. We also effectively employ greedy search, and
following optimization of S∗i , estimate the approximate
posterior q̄i ∼ N (ci,Di) where

(4.15) (D)−1 = PS∗i Σ−1
i PS∗i , ci = DPS∗i ri

The M-step equations are again solved by (3.10) where
q̄i is substituted for qi. We term the overall procedure sparse
orthogonal probabilistic PCA (soPPCA).

The method derived above reduces to the Truncated
Power Method (TPower[7]) with orthogonal projection de-
flation (see the supplement for details) when C is identity.
soPPCA is thus, a generalization of TPower as a non-identity
C helps in incorporating domain knowledge which can be
useful as we see in Section 5.

4.1 Reduction of soPPCA to the Truncated Power
Method Truncated power method is a simple algorithm to
evaluate k−sparse principal eigenvector of a positive semidef-
inite matrix. It is similar to the standard power method, except
that at every iteration it truncates the iterating vector to top-k
absolute values and zeros out the rest of the vector before nor-
malizing (see Yuan and Zhang [23] for details and recovery
guarantees). The following proposition shows an equivalence
between a single component from soPPCA and the truncated
power method.

PROPOSITION 4.1. If C = I, the normalized mean of the
component m1 is equal to the principal sparse eigenvector
obtained by the truncated power method on the covariance
matrix of T.

Proof. If C = I, the optimization problem 4.14 reduces
to (by combining E-step and M-step, and ignoring scaling
constants since they vanish when normalizing):

max
S∈Sk1

(PSr1)†(PSr1) ≡ max
K⊂[d]
|K|=ki

r†KrK

≡ max
K⊂[d]
|K|=ki

abs(rK)

≡ max
K⊂[d]
|K|=ki

abs(T†Tm1)

Orthogonal projection deflation of the covariance matrix
involves a Gram-Schmidt procedure to build orthogonal set
of components from possibly non-orthogonal ones obtained
after projection deflation [13]. The following corollary shows
an equivalence between soPPCA and the truncated power
method with orthogonal projection covariance deflation.

COROLLARY 4.1. If C = I, the means of the components es-
timated by soPPCA recover the sparse eigenvectors obtained
by the truncated power method with orthogonal projection
deflation.



Proof. Follows from Proposition 4.1, the projection deflation
formula 3.11 and the fact that projection deflation with
truncated power method is equivalent to orthogonal projection
deflation.

Thus, for the special case of C = I, the recovery and
performance guarantees obtained by Truncated Power method
are also inherited by soPPCA. Note that the covariance matrix
C can provide important information about the domain and
can aid in extracting out more meaningful components as
compared to using I. We shall see the performance gains in
Section 5.

5 Experiments
In this section we present empirical results to illustrate the
utility of orthogonality in probabilistic PCA models in prac-
tice. We perform quantitative analysis on resting state fMRI
dataset with state of the art sparse PCA methods. To illustrate
the practical applicability, we also provide qualitative analysis
regarding the interpretation of the extracted components by a
domain expert.

One of the key questions in functional neuroimaging
is the extent to which task brain measurements incorporate
distributed regions in the brain. One way to tackle this
hypothesis is to decompose a collection of task statistical
maps and examine the shared components. Smith et al. [20]
considered a similar question using the brain map database
decomposed via ICA, showing correspondence between
task activation components and resting state components.
Following their aproach, we downloaded 1669 fMRI task
statistical maps from neurovault (http://neurovault.org/). Each
image in the collection represents a standardized statistical
map of univariate brain voxel activation in response to
an experimental manipulation. The statistical maps were
downsampled from 2mm ∧ 3 voxels to 3mm ∧ 3 voxels using
the nilearn python package (http://nilearn.github.io/). We then
applied the standard brain mask, removing voxels outside of
the grey matter, resulting in D=65598 variables (dimensions).

We cluster the original set of dimensions to fewer dimen-
sions using the spatially constrained Ward hierarchical clus-
tering approach of [14], to produce three smaller dimensional
datasets with 100, 1000, 10000 dimensions. This makes the
dataset challenging to deal with because we have cases where
the dimensionality exceeds the number of datapoints. We
incorporate smoothness via spatial correlation matrix C on
the prior on W.

For the three datasets, we compare the ratio of variance
explained by first 6 sparse components to the total variance in
the dataset. For d = 100, each sparse component has sparsity
10, d = 1000 and d = 10000 have sparsity of 10 amd 20 re-
spectively in each of their principal components. To illustrate
the generalization ability obtained by the use of proper priors,
we split the data 50-50 training and testing. We find the k
sparse principal components on the training data, and use the

extracted components to estimate the variance explained on
the out of sample test data. We compare against: General-
ized Power Method [7] (Gpower), PCA via Low rank [16]
(LRPCA), Truncated Power Method [23] (Tpower), Full Reg-
ularized Path Sparse PCA [1] (PathSPCA), emPCA [18], sub-
modPCA [8]. We plot the ratio of explained variance along
with all the above mentioned methods. Figure 4 shows the
plots for all the three datasets. soPPCA performs better than
all the other methods on the three datasets. Of special note is
the gain in performance over submodPCA which uses naïve
deflation as opposed to the orthogonal deflation proposed in
this paper. The gain in performance is more apparent with
increase in dimensionality. For d = 10000 and 10 principal
components, our deflation technique achieves more than 20%
performance improvement with respect to the state-of-the-
art TPower, more than 50% improvement over the state-of-
the-art probabilistic PCA method using naïve deflation, and
more than 400% improvement vs emPCA. We note that our
improvement is even greater than the corresponding improve-
ment obtained by [13] for deterministic deflation techniques.
Qualitative analysis is presented in Figure 3. The brain maps
presented reflect overlapping but distinct task activation net-
works, all involving activation of visual cortices. The net-
works vary in the lateralization of prefrontal engagement,
with (a) showing largely right-lateralized ventral prefrontal,
(b) showing largely bilateral dorsolateral prefrontal, and (c)
showing bilateral premotor and left-lateralized ventrolateral
activation

Timing experiments To illustrate the importance of
deflation for scalability, we select the one of the datasets
used above (with d = 1000), and show the difference in time
taken to infer top-6 components for non-sparse Probabilistic
PCA (Figure 1) using traditional joint estimation of all 6
components ([21]) vs our approach ofsequential estimation
with orthogonal deflation outlined in Section 3.2. The results
are presented in Figure 5. On the x-axis is the number of top-
k components extracted, while on the y-axis is the amount of
time taken in seconds. We plot total time taken to estimate
top-k components using both the methods. The plot clearly
shows the importance of deflation for scalability – the time
taken for joint estimation grows exponentially as opposed
to growing linearly when using deflation. We further state
that these results were obtained on the smallest dataset of
the three datasets used in this manuscript for illustrative
purposes, and difference in the time taken on bigger datasets
are even more profound. We hope that this analysis and our
presented method can aid in being a useful tool for scaling
up probabilistic methods to fit the needs for modern day data
analysis.

6 Conclusion and Future Work
We proposed a general purpose technique that can be applied
to incorporate deflation into probabilistic PCA and its sparse



(a)

(b) (c)

Figure 3: Brain plots of top-3 components extracted from the fMRI data. They reflect overlapping but distinct task activation
networks, all involving activation of visual cortices. The networks vary in the lateralization of prefrontal engagement, with
(a) showing largely right-lateralized ventral prefrontal, (b) showing largely bilateral dorsolateral prefrontal, and (c) showing
bilateral premotor and left-lateralized ventrolateral activation
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(a) d=100
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(b) d=1000
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(c) d=10000

Figure 4: Quantitative Performance on fMRI Data. For d = 10000 and 10 principal components, our deflation technique
achieves more than 20% performance improvement with respect to the state-of-the-art TPower, more than 50% improvement
over the state-of-the-art probabilistic PCA method using naïve deflation, and more than 400% improvement vs emPCA.

1 2 3 4 5 6
Number of PCs

0

500

1000

1500

Ti
m

e 
ta

ke
n 

(s
ec

)

JointEstimation
Deflation

Figure 5: Time taken for estimating top-6 components using
traditional joint estimation vs estimation one component at a
time using deflation

variants. We note that the application of sparse PCA is for il-
lustrating the flexibility and power of our proposed method, as
it can be readily applied to any structured probabilistic PCA
model with a minor modification. The proposed approach en-
ables large-scale applications of probabilistic PCA where one
is interested in the top few (and potentially structured) com-
ponents given high-dimensional data. Our approach enables
such components to be efficiently computed in a serial fash-
ion, interleaved with deflation. We showed that the resulting
components regain the interpretability and decomposability of
optimization based techniques, while retaining the rich prior
structure of probabilistic techniques. Experimental results
demonstrate the utility of the proposed deflation approach.
We showed that using proper deflation improves the variance
explained over several existing methods which use naïve de-
flation. Further we presented an experiment for illustrating
the importance of sequential estimation for scalability. We
also showed the equivalence between various probabilistic
decomposition techniques and their deterministic counter-
parts. We are also interested in developing analogues of the
proposed techniques for non-linear decomposition.
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